FN-336 0402, 000

On an Invariant of a System affected by Intra-Beam Scattering

Ken TAKAYAMA

Fermilab, March , 81

1. Introduction

A. Piwinski has shown that there is an invariant that is useful in understanding the effects of intra-beam scattering on betatron oscillations and the energy spread. After some mathematical manipulations, the invariant can be written as

$$\frac{1}{n}\left(\frac{1}{r^2}-\alpha\right)\left\langle\left(\frac{\Delta P}{P}\right)^2\right\rangle + \frac{1}{\beta_x}\left\langle\epsilon_x\right\rangle + \frac{1}{\beta_y}\left\langle\epsilon_y\right\rangle = const \qquad (1-1)$$

where $p, \Delta p$ are the momentum and momentum deviation, $\pi \epsilon_x$ and $\pi \epsilon_y$ are the betatron emittances for horizontal and vertical directions, respectively, β_x and β_y are the horizontal and vertical betatron amplitude functions, γ is the particle energy

in units of its rest energy, of is the momentum compaction factor $(=7/\beta_z)$ which is considered by Piwinski as a good approximation), γ is the momentum dispersion function, $\langle A \rangle$ is the mean value of a quantity A over all particles, \overline{A} is the mean value of a quantity A in the orbit, and the integer n is 2 for an unbunched beam.

If we asume that betatron oscillations and energy oscillations are harmonic oscillators and that intra-beam scattering is a local elastic collision, we can derive the expression for this invariant more easily with the aid of the energy conservation law.

2. System of N three-dimensional harmonic oscillators

According to the above assumption, we can regard a beam as an isolated system of N three-dimensional harmonic oscillators which experience many random collisions among themselves. Here the longitudinal oscillation is taken as a free motion because we consider the case of an unbunched beam.

Consider the behavior of <u>a single particle</u> before and after a collision. Its behavior can be described by the Hamiltonian

$$H(x,P_{x};Y,P_{y};Y,S;\theta) = \frac{V_{x}}{2}(P_{x}^{2} + x^{2}) + \frac{V_{y}}{2}(P_{y}^{2} + Y^{2}) - \lambda xS + \frac{V_{y}}{2}S^{2}$$
 (2 - 1)

where V_{k}, V_{γ}, V_{s} are the horizontal and vertical betatron tunes ,and longitudinal frequency, $X, P_{k}; Y, P_{\gamma}; + S$ are the canonical variables for horizontal, vertical ,and longitudinal motions ($S \equiv \Delta P/P$), λ is a coupling coefficient, and $\theta = s/R$ where R is the mean machine radius and s is the distance along the orbit.

We can separate the horizontal excursion of Eq. (2-1) into two parts, the equilibrium orbit and the homogeneous harmonic oscillation around the equilibrium orbit. This homogeneous harmonic oscillation corresponds to a pure betatron oscillation and the equilibrium orbit corresponds to the well-known closed

orbit which varies linearly with δ , the longitudinal momentum deviation. The equation of motion obtained from the Hamiltonian (2-1) is then

$$\dot{X} = -V_x^2 X + \lambda V_x \delta \qquad \left(= \frac{d}{d\theta} \right) \qquad (2-2)$$

Therefore, the equilibrium orbit (X_{e_k} , P_{e_k}) is written as

Transforming into a new canonical variable (χ , γ),

$$x = x - xeq$$

$$P_x = P_x - Peq$$

we find, from the generating function,

$$g(x, P_x; \theta) = -(xe_{\theta} + x)P_x + P_{eq} \cdot x \qquad (2-4)$$

the new Hamiltonian

$$K = H + \frac{\partial^{2}_{3}}{\partial \theta}$$

$$= \frac{V_{x}}{2} \left[P_{x}^{2} + (x + D\delta)^{2} \right] - \lambda (x + D\delta) \delta + \frac{V_{x}}{2} \delta^{2} + \frac{V_{Y}}{2} \left[P_{Y}^{2} + Y^{2} \right]$$

$$= \frac{V_{x}}{2} \left[P_{x}^{2} + x^{2} \right] + \frac{V_{Y}}{2} \left[P_{Y}^{2} + Y^{2} \right] + \frac{1}{2} (V_{5} - V_{x}D^{2}) \delta^{2} \qquad (2 - 5)$$

In terms of action-angle variables, we can write the Hamiltonian in the form

$$G = V_x J_x + V_y J_y + \frac{1}{2} (V_s - V_x D^2) J_s \qquad (2 - 6)$$

Next, consider the behavior of the system before and after a collision. This behavior is described by the Hamiltonian H_{total}

$$H_{total} = \sum_{i=1}^{N} \left[\nu_x J_x + \nu_y J_y + \frac{1}{2} (\nu_s - \nu_x D^2) J_s \right]; \qquad (2-7)$$

Since we have assumed that the Coulomb interaction between paticles is a local elastic collision, the Hamiltonian Htotal must be an invariant of the motion. We therefore obtain easily the invariant expression

$$V_x \langle J_x \rangle + V_Y \langle J_Y \rangle + \frac{1}{2} (V_S - V_X D^2) \langle J_S \rangle = const (2 - 8)$$

where < A > is the mean value of A over all particles.

Finally, we can rewrite this expression in terms of betatron parameters. Relations between the parameters used above and the orbit parameters of a real machine are

D = $\gamma(s)/\beta(s)$ because $\chi(s)=\beta(s)\chi \longrightarrow \chi_{e_1}(s)=\beta(s)\chi_{e_2}(s)$ where $\chi(s)$, $\chi_{e_2}(s)$ are the horizontal excursion and the equilibrium orbit in a real ring, $\gamma(s)$ is the momentum dispersion function.

$$V_{x,y} = R/\overline{\beta_{x,y}}$$
 (smooth approximation)

 $V_S = R/r^2$ because in the rest frame(independent variable:s) the momentum deviation takes the term $\Delta P/r$ (See Appendix) and in the θ frame(independent variable: θ) the longitudinal energy must be multiplied by R.

Thus Eq. (2-8) becomes

$$R \frac{\langle J_z \rangle}{\beta_x} + R \frac{\langle J_y \rangle}{\beta_y} + \frac{R}{2} \left(\frac{1}{3^2} - \frac{7(s)}{\beta_x} \beta_x(s) \right) \langle J_s \rangle = const \quad (2 - 9)$$
Using the approximate expression for the momentum compaction factor (2)
$$\alpha = \frac{7(s)}{\beta_x} \beta_x(s)$$

we obtain, from Eq. (2-9),

$$\frac{\langle J_z \rangle}{\overline{\beta_z}} + \frac{\langle J_y \rangle}{\overline{\beta_y}} + \frac{1}{2} \left(\frac{1}{\delta^2} - \alpha \right) \langle J_s \rangle = const \quad (2 - 10)$$

which is identical with the original form, Eq.(1-1), derived by Piwinski.

3. Conclusion

Although particles in the beam undergo many collisions, the invariant Eq.(2-10) is valid if the interaction is elastic and this is simply a consequence of the conservation of energy.

Aknowledgements

The auther is grateful to S. Ohnuma, F. Cole and A. Ruggiero for valuable suggestions and comments.

References:

- (1) A. Piwinski, "INTRA-BEAM SCATTERING ", Proc. 9th Int. Conf. on High Energy Accelerators, p. 405 (1974)
- (2) M. Sands, "THE PHYSICS OF ELECTRON STORAGE RINGS-AN INTRODUCTION", SLAC-121, UC-283(ACC), p.77 (1970)

K is the laboratory system and K is the system at rest synchronous particle which has the velocity v_o (=c β_o) in K. The space-time coordinates of a test particle are (x,y,z,ict) in K

and (x',y',z',ict') in K'. The four momenta $(p_x,p_y,p_z,iE/c)$ in K are

$$P_{x} = \frac{w_{0}V_{x}}{\sqrt{1-\beta^{2}}}, P_{y} = \frac{w_{0}V_{y}}{\sqrt{1-\beta^{2}}}, P_{z} = \frac{w_{0}V_{z}}{\sqrt{1-\beta^{2}}}, F = \frac{w_{0}C^{2}}{\sqrt{1-\beta^{2}}}$$
with $\beta = v/c$ (v is the velocity in K) and $v_{z} \simeq v$. Similar relations hold for the four-momenta $(p'_{z}, p'_{y}, p'_{z}, iE/c)$ measured in K.

In K the longitudinal momentum deviation from value is

$$(\Delta P_{z}) \equiv P_{z} - P_{z0}$$

$$= w_{0}C \left[\frac{\beta}{\sqrt{1-\beta^{2}}} - \frac{\beta_{0}}{\sqrt{1-\beta_{0}^{2}}} \right] \qquad (A - 2)$$

Transformed into K, the momentum $p_{\mathbf{z}}$ is written in the form

$$P_{2} = \frac{P_{2} + i\beta \cdot iE/C}{\sqrt{1-\beta \cdot i}}$$

$$= \frac{m_{0}C}{\sqrt{1-\beta \cdot i}} \cdot \frac{\beta - \beta \cdot iE/C}{\sqrt{1-\beta \cdot i}}$$
Therefore the longitudinal momentum deviation in K is written as

$$(\Delta P_{\mathbf{z}})' = \frac{\mathbf{w} \cdot \mathbf{c}}{\sqrt{1-\beta_{\mathbf{z}}^2}} \cdot \frac{\beta - \beta_{\mathbf{z}}}{\sqrt{1-\beta_{\mathbf{z}}^2}}$$
(A - 3)

We define a small parameter

$$\in \quad \equiv \quad \beta - \beta \circ \tag{A - 4}$$

We expand the right-hand sides of Eq.(A-2) and (A-3) in $\boldsymbol{\epsilon}$ and retain only the lowest order terms. We then get the expressions

for the longitudinal momentum deviation

$$(\Delta P_z) = \frac{W_0 C \epsilon}{(1 - \beta_0^2)^{\frac{3}{2}}}$$
(A - 5)

$$(\Delta P_z) = \frac{m_0 C \epsilon}{(1 - \beta_0^2)^2}$$

$$(\Delta P_z) = \frac{m_0 C \epsilon}{(1 - \beta_0^2)}$$
(A - 6)

so that

$$(\Delta p_g)' = \frac{(\Delta p_g)}{\gamma} \qquad (A - 7)$$